Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 919
Filtrar
1.
BMC Complement Med Ther ; 24(1): 172, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654265

RESUMEN

BACKGROUND: To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS: The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS: Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION: The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.


Asunto(s)
Antiinflamatorios , Supervivencia Celular , Curcumina , Células Epiteliales , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Antiinflamatorios/farmacología , Células Epiteliales/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Limbo de la Córnea/efectos de los fármacos , Células Cultivadas , Diarilheptanoides/farmacología , Epitelio Corneal/efectos de los fármacos
2.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38634659

RESUMEN

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Curcumina , Ensayos de Selección de Medicamentos Antitumorales , Rutenio , Humanos , Curcumina/farmacología , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Rutenio/química , Rutenio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Diarilheptanoides/química , Diarilheptanoides/farmacología , Diarilheptanoides/síntesis química , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Modelos Moleculares , Teoría Funcional de la Densidad , Supervivencia Celular/efectos de los fármacos , Células HEK293
3.
Stem Cell Res Ther ; 15(1): 60, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433217

RESUMEN

BACKGROUND: The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD: We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT: The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION: These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.


Asunto(s)
Vía de Señalización Hippo , Células Madre Pluripotentes Inducidas , Adulto , Animales , Humanos , Diferenciación Celular , Diarilheptanoides/farmacología , Antígenos CD34
4.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473770

RESUMEN

Turmeric, known for its curcuminoid-rich rhizome, particularly curcumin, exhibits notable antioxidant and antiviral properties. The likelihood of microbial contamination necessitates finding reliable techniques for subjecting the sample to radiation from this plant-based raw material. One alternative is to expose curcumin to radiation (e-beam), which was carried out as part of this research. Confirmation of the lack of curcumin decomposition was carried out using HPLC-DAD/MS techniques. Additionally, using the EPR technique, the generated free radicals were defined as radiation effects. Using a number of methods to assess the ability to scavenge free radicals (DPPH, ABTS, CUPRAC, and FRAP), a slight decrease in the activity of curcumin raw material was determined. The analysis of the characteristic bands in the FT-IR spectra allowed us to indicate changes in the phenolic OH groups as an effect of the presence of radicals formed.


Asunto(s)
Curcumina , Espectroscopía Infrarroja por Transformada de Fourier , Diarilheptanoides , Antioxidantes , Radicales Libres
5.
Cardiorenal Med ; 14(1): 160-166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38350427

RESUMEN

INTRODUCTION: The role of curcuminoids, a striking antioxidant, in prevention of contrast-induced acute kidney injury (CI-AKI) remains unknown. We aimed to evaluate the efficacy and safety of curcuminoids in preventing CI-AKI in patients undergoing elective coronary angiography (CAG) and/or percutaneous coronary intervention (PCI). METHODS: We randomized 114 patients who were undergoing elective CAG and/or PCI to receive curcuminoids, 4 g/day (1 day before and 1 day after the procedure, n = 56), or placebo (n = 58). Serum creatinine was assessed at baseline, 12, 24, and 48 h after contrast exposure. The primary endpoint was development of CI-AKI defined as serum creatinine increase ≥0.3 mg/dL within 48 h after contrast exposure. The secondary endpoint was the occurrence of kidney injury defined by >30% increase in urine neutrophil gelatinase-associated lipocalin (NGAL). RESULTS: Baseline characteristics were comparable between the two groups. Seven (12.7%) in curcuminoids group and eight (14.0%) in placebo group developed CI-AKI (p = 0.84). The incidence of increased urine NGAL was comparable in the placebo and curcuminoids group (39.6% vs. 50%, respectively; p = 0.34). None in both groups had drug-related adverse events. CONCLUSION: This is a pilot study to demonstrate the safety and tolerability of curcuminoids in patients undergoing elective CAG and/or PCI. Curcuminoids have no protective effects against kidney injury after elective CAG and/or PCI.


Asunto(s)
Lesión Renal Aguda , Medios de Contraste , Angiografía Coronaria , Intervención Coronaria Percutánea , Humanos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Masculino , Femenino , Método Doble Ciego , Angiografía Coronaria/efectos adversos , Medios de Contraste/efectos adversos , Proyectos Piloto , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Anciano , Persona de Mediana Edad , Lipocalina 2/orina , Creatinina/sangre , Antioxidantes/administración & dosificación , Curcumina/uso terapéutico , Curcumina/administración & dosificación , Diarilheptanoides
6.
Food Chem Toxicol ; 186: 114489, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360388

RESUMEN

Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17ß-hydroxysteroid dehydrogenase 3 (17ß-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17ß-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17ß-HSD3 were bisdemethoxycurcumin (0.61 µM) > curcumin (8.63 µM) > demethoxycurcumin (9.59 µM) > tetrahydrocurcumin (22.04 µM) > cyclocurcumin (29.14 µM), and those against rat 17ß-HSD3 were bisdemethoxycurcumin (3.94 µM) > demethoxycurcumin (4.98 µM) > curcumin (9.62 µM) > tetrahydrocurcumin (45.82 µM) > cyclocurcumin (143.5 µM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17ß-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17ß-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Curcumina , Curcumina/análogos & derivados , Diarilheptanoides , Piranos , Humanos , Ratas , Animales , Curcumina/farmacología , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
7.
Immun Inflamm Dis ; 12(2): e1195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38411358

RESUMEN

BACKGROUND: The objective of this thesis is to evaluate the effect of bisdemethoxycurcumin (BDMC) on osteoarthritis (OA) and comprehensively evaluate the role of the Nuclear Factor erythroid 2-Related Factor 2 (Nrf2) signalling pathway in chondrocytes. METHOD: In our study, we treated chondrocytes with BDMC in an in vitro chondrocyte assay and measured its influence on extracellular matrix (ECM) expression, downstream heme oxygenase-1 (HO-1) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels. RESULTS: Our study indicates that BDMC significantly activates the Nrf2 signaling pathway in chondrocytes in vitro. Furthermore, the expression of matrix metalloproteinase 3, interleukin 1ß, recombinant a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4 and (ADAMTS)5 was significantly suppressed by BDMC. CONCLUSION: This study confirms the potential for BDMC to activate the Nrf2/HO-1/NLRP3 signalling pathway and alleviate OA symptoms. Therefore, BDMC is a promising therapeutic agent for OA that offers new insights and treatment methods.


Asunto(s)
Curcumina , Humanos , Curcumina/farmacología , Condrocitos , Factor 2 Relacionado con NF-E2 , Hemo-Oxigenasa 1 , Proteína con Dominio Pirina 3 de la Familia NLR , Diarilheptanoides , Inflamación/tratamiento farmacológico , Cartílago
8.
Clin Nutr ESPEN ; 59: 96-106, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38220413

RESUMEN

BACKGROUND & AIMS: Turmeric (a source of curcumin) is an excellent food to modulate oxidative stress, inflammation, and gut dysbiosis in patients with chronic kidney disease (CKD). However, no studies report the benefits of curcumin in patients undergoing peritoneal dialysis (PD). This study aims to evaluate the effects of curcuminoid supplementation on oxidative stress, inflammatory markers, and uremic toxins originating from gut microbiota in patients with CKD undergoing PD. METHODS: This longitudinal, randomized, single-blind, placebo-controlled trial evaluated 48 patients who were randomized into two groups: Curcumin (three capsules of 500 mg of Curcuma longa extract, with 98.42 % total curcuminoids) or placebo (three capsules of 500 mg of starch) for twelve weeks. In the peripheral blood mononuclear cells (PBMCs), the transcriptional expression levels of Nrf2, HOX-1 and NF-κB were evaluated by quantitative real-time PCR. Oxidative stress was evaluated by malondialdehyde (MDA) and total Thiol (T-SH). TNF-α and IL-6 plasma levels were measured by ELISA. P-cresyl sulphate plasma level, a uremic toxin, was evaluated by high-performance liquid chromatography (HPLC) with fluorescent detection. RESULTS: Twenty-four patients finished the study: 10 in the curcumin group (57.5 ± 11.6 years) and 14 in the placebo group (56.5 ± 10.0 years). The plasma levels of MDA were reduced after 12 weeks in the curcumin group (p = 0.01), while the placebo group remained unchanged. However, regarding the difference between the groups at the endpoint, no change was observed in MDA. Still, there was a trend to reduce the p-CS plasma levels in the curcumin group compared to the placebo group (p = 0.07). Likewise, the concentrations of protein thiols, mRNA expression of Nrf2, HOX-1, NF-κB, and cytokines plasma levels did not show significant changes. CONCLUSION: Curcuminoid supplementation for twelve weeks attenuates lipid peroxidation and might reduce uremic toxin in patients with CKD undergoing PD. This study was registered on Clinicaltrials.gov as NCT04413266.


Asunto(s)
Curcumina , Diálisis Peritoneal , Insuficiencia Renal Crónica , Uremia , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Leucocitos Mononucleares/metabolismo , Método Simple Ciego , Inflamación , Estrés Oxidativo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Diarilheptanoides/farmacología , Diarilheptanoides/uso terapéutico , Suplementos Dietéticos , Uremia/tratamiento farmacológico
9.
BMC Complement Med Ther ; 24(1): 31, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212737

RESUMEN

Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.


Asunto(s)
Alcaloides , Diarilheptanoides , Fitoterapia , Humanos , Curcuma/química , Etnofarmacología , Alcaloides/química
10.
Phytochemistry ; 219: 113975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215811

RESUMEN

Two previously undescribed chain diarylheptanoid derivatives (2-3), five previously undescribed dimeric diarylheptanoids (4-8), together with one known cyclic diarylheptanoid (1) were isolated from Zingiber officinale. Their structures were elucidated by extensive spectroscopic analyses (HR-ESI-MS, IR, UV, 1D and 2D NMR) and ECD calculations. Biological evaluation of compounds 1-8 revealed that compounds 2, 3 and 4 could inhibit nitrite oxide and IL-6 production in lipopolysaccharide induced RAW264.7 cells in a dose-dependent manner.


Asunto(s)
Zingiber officinale , Diarilheptanoides/farmacología , Diarilheptanoides/química , Espectroscopía de Resonancia Magnética , Antiinflamatorios/farmacología , Estructura Molecular
11.
Chem Pharm Bull (Tokyo) ; 72(1): 127-134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296515

RESUMEN

Although curcumin and its analogs exhibit anticancer activity, they are still not used as anticancer drugs because of their water insolubility and extremely poor bioavailability. This study describes the development of water-soluble prodrugs of GO-Y030, a potent antitumor C5-curcuminoid, in an attempt to enhance its bioavailability. These prodrugs release the parent compound via a retro-thia-Michael reaction. To endow sufficient hydrophilicity onto GO-Y030 via a single thia-Michael reaction of an aqueous entity, we used a modified glycoconjugate with a thiol group. The water-solubilizing motif was installed on GO-Y030 by the thia-Michael reaction of propargyl-polyethylene glycol (PEG)-thiol and subsequent click chemistry (CuAAC) reaction with 1-glycosyl azide. Turbidity measurements revealed a significantly improved water solubility of the prodrugs, demonstrating that disaccharide conjugates were completely dissolved in water at 100 µM. Their cytotoxicity was comparable to that of the parent compound GO-Y030, indicating the gradual in situ release of GO-Y030. The release of GO-Y030 from GO-Y199 via the retro-thia-Michael reaction was demonstrated through a degradation study in water. Our retro-thia-Michael reaction-based prodrug system can be used for targeting cancer cells.


Asunto(s)
Derivados del Benceno , Cetonas , Profármacos , Profármacos/farmacología , Profármacos/química , Diarilheptanoides , Agua , Compuestos de Sulfhidrilo , Solubilidad
12.
J Biomol Struct Dyn ; 42(5): 2570-2585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37116195

RESUMEN

Malaria is among the top-ranked parasitic diseases that pose a threat to the existence of the human race. This study evaluated the antimalarial effect of the rhizome of Zingiber officinale in infected mice, performed secondary metabolite profiling and detailed computational antimalarial evaluation through molecular docking, molecular dynamics (MD) simulation and density functional theory methods. The antimalarial potential of Z. officinale was performed using the in vivo chemosuppressive model; secondary metabolite profiling was carried out using liquid chromatography-mass spectrometry (LC-MS). Molecular docking was performed with Autodock Vina while the MD simulation was performed with Schrodinger desmond suite for 100 ns and DFT calculations with B3LYP (6-31G) basis set. The extract showed 64% parasitaemia suppression, with a dose-dependent increase in activity up to 200 mg/kg. The chemical profiling of the extract tentatively identified eight phytochemicals. The molecular docking studies with plasmepsin II and Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) identified gingerenone A as the hit molecule, and MMGBSA values corroborate the binding energies obtained. The electronic parameters of gingerenone A revealed its significant antimalarial potential. The antimalarial activity elicited by the extract of Z. officinale and the bioactive chemical constituent supports its usage in ethnomedicine.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antimaláricos , Diarilheptanoides , Antagonistas del Ácido Fólico , Zingiber officinale , Humanos , Animales , Ratones , Antimaláricos/química , Simulación del Acoplamiento Molecular , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antagonistas del Ácido Fólico/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plasmodium falciparum
13.
Chem Biol Interact ; 387: 110822, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056805

RESUMEN

Rheumatoid arthritis (RA) is a highly prevalent and chronic inflammatory synovial joint disease manifested by hyperplasia and continuous inflammation. Curcumin (Cur) has been studied for alleviating RA. However, poor stability and oral bioavailability restrict its therapeutic value. Bisdemethoxycurcumin (BDMC), a curcumin (Cur) derivative, exerts better stability and oral bioavailability than Cur. However, the efficacy of BDMC on RA has not been fully clarified. The aim of the study was to investigate the therapeutic effects and underlying mechanisms of BDMC on RA. The in-vivo anti-arthritic activity of BDMC was determined via adjuvant-induced arthritis (AIA) rat model. Paw swelling, body weight, arthritic index, and histopathological assessments were performed. RAW264.7 cell was stimulated by lipopolysaccharides (LPS) in vitro. The cell viability were determined by CCK8 assay, while the migration ability was determined using cell wound healing and transwell assays. Furthermore, in-vivo and in-vitro levels of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) were assayed by ELISA, and that of IκBα, p-NF-κB, NF-κB, and COX-2 were assessed via Western blot or immunofluorescence. In AIA rat model, it suggested a higher anti-arthritic activity of BDMC than Cur, including amelioration of swelling in hind paws, reduced arthritic index, and alleviated histopathological injury in rats. Furthermore, BDMC also substantially decreased the levels of the aforementioned pro-inflammatory cytokines in both in-vivo and in-vitro, inhibited the IκBα degradation, down-regulated the COX-2 levels and p-NF-κB/NF-κB ratio in AIA rats and LPS-stimulated RAW264.7 cells. Additionally, BDMC showed an inhibitory effect on the migration of LPS-stimulated RAW264.7 cells. BDMC could effectively ameliorate RA by suppressing inflammatory reactions and inhibiting macrophage migration, more potentially than Cur.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Curcumina , Ratones , Ratas , Animales , FN-kappa B/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Inhibidor NF-kappaB alfa/metabolismo , Lipopolisacáridos/toxicidad , Ciclooxigenasa 2 , Inflamación/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Citocinas/metabolismo , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Células RAW 264.7 , Diarilheptanoides/farmacología , Diarilheptanoides/uso terapéutico
14.
Photodiagnosis Photodyn Ther ; 45: 103951, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161036

RESUMEN

Metal-free near-infrared absorbing photosensitizers (PS) have been considered promising candidates for photodynamic therapy. Curcumin, curcuminoid, and its derivatives have therapeutic values due to their anti-inflammatory, antifungal, and antiproliferative properties. Curcuminoid-BF2 chelates have also been studied as cell imaging probes, however, their applications in photodynamic therapy are rare. In this article, we describe the synthesis and therapeutic evaluation of quinolizidine fused curcuminoid-BF2 chelate (Quinolizidine CUR-BF2) containing an acid-sensitive group. This donor-acceptor-donor curcuminoid-BF2 derivative exhibits absorption and emission in the deep red region with an absorption band maximum of ∼647 nm and a weak emission band at approximately 713 nm. It is interesting to note that this derivative has a high molar extinction coefficient (164,655 M-1cm-1). Quinolizidine CUR-BF2 possesses intramolecular charge transfer properties, facilitating the production of singlet oxygen (1O2), which plays a crucial role in cell death. Additionally, Quinolizidine CUR-BF2 can enable the selective release of active ingredients in an acidic medium (pH 5). Furthermore, the nanoaggregates of PS were prepared by encapsulating Quinolizidine CUR-BF2 within Pluronic F127 block co-polymer for better water-dispersibility and enhanced cellular uptake. Dark cytotoxicity of nanoaggregates was found to be negligible, whereas they exhibited significant photoinduced cytotoxicity towards cancer cells (MCF-7 and A549) under irradiation of 635 nm light. Further, the cell death pathway using Quinolizidine CUR-BF2 nanoaggregates as PS is found to occur through apoptosis. Specifically, the present study deals with the successful preparation of Quinolizidine CUR-BF2 nanoaggregates for enhanced water-dispersibility and cellular uptake as well as the efficacy evaluation of developed nanoaggregates for photodynamic therapy.


Asunto(s)
Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Diarilheptanoides , Células A549 , Células MCF-7 , Fármacos Fotosensibilizantes/farmacología , Agua
15.
Int J Biol Macromol ; 258(Pt 2): 129071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159707

RESUMEN

Vesicle delivery carriers, used to stabilize hydrophobic drugs, are characterized by the propensity to aggregate, and fuse, limiting its applications. Fortifying vesicle-entrapped drugs within a biodegradable polymeric film constitutes a promising solution. In this study, biodegradable poly (vinyl alcohol) copolymerized with gelatin-sericin film and integrated alongside vesicle-entrapped demethoxycurcumin (DMC) or bisdemethoxycurcumin (BDMC) was developed, extensively characterized for improve efficacy, and compared. Vesicle-entrapped DMC or BDMC was spherical in shape with no changes in size, zeta-potential, and morphology after storing at 4 °C for 30 days. Antibacterial activity of vesicle-entrapped DMC formulations against Acinetobacter baumannii and Staphylococcus epidermidis was more effective than that of its free form. DMC and BDMC demonstrated dose dependent reduction in lipopolysaccharides (LPS)-induced nitric oxide (NO) levels either in free or in entrapped form. Moreover, vesicle-entrapped DMC/BDMC suppressed NO production at lower concentrations, compared with that of their free form and significantly improved the viability of RAW264.7 and HaCaT cells. Furthermore, functionalized film with vesicle-entrapped DMC/BDMC demonstrated excellent radical scavenging, biocompatibility, and cell migration efficacy. Thus, incorporating vesicle, entrapped DMC/BDMC within biodegradable polymeric film may comprised a promising strategy for improving stability, wound healing, and inflammation attenuation efficacy.


Asunto(s)
Curcumina , Diarilheptanoides , Sericinas , Curcumina/química , Gelatina , Etanol , Cicatrización de Heridas , Antiinflamatorios
16.
Molecules ; 28(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067442

RESUMEN

Many biological functions of curcumin have been reported. As certain bioactivities of curcumin are eliminated by antioxidants, reactive oxygen species generated by curcumin have been suggested as a relevant mechanism. In the present study, the effects of different types of antioxidants on the stability and bioactivities of curcumin were analyzed. High concentrations (>4 mM) of thiol antioxidants, including N-acetylcysteine (NAC), glutathione (GSH), and ß-mercaptoethanol, accelerated the decomposition of curcumin and other curcuminoids; the submillimolar levels (<0.5 mM) of GSH and NAC rather improved their stability. Ascorbic acid or superoxide dismutase also stabilized curcumin, regardless of their concentration. The cellular levels and bioactivities of curcumin, including its cytotoxicity and the induction of heme oxygenase-1, were significantly reduced in the presence of 8 mM of GSH and NAC. The effects were enhanced in the presence of submillilmolar GSH and NAC, or non-thiol antioxidants. The present results indicate that antioxidants with a reduced thiol group could directly interact with the α,ß-unsaturated carbonyl moiety of curcuminoids and modulate their stability and bioactivity.


Asunto(s)
Antioxidantes , Curcumina , Antioxidantes/farmacología , Diarilheptanoides , Curcumina/farmacología , Compuestos de Sulfhidrilo/farmacología , Glutatión/farmacología , Acetilcisteína/farmacología
17.
Curr Pharm Des ; 29(36): 2867-2876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37957863

RESUMEN

BACKGROUND: Curcuminoids, including curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin, are natural polyphenolic compounds that exhibit various biological properties, such as antioxidant, anti-inflammatory, and anticancer activities. Dysregulation of the interleukin (IL)-6-mediated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway is closely associated with the development of colorectal cancer (CRC). METHODS: Here, we have evaluated the modulation of the IL-6/JAK/STAT3 pathway of curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin in LoVo and HT-29 colorectal cancer cells with a single molecular array (Simoa), western blot analysis, real-time polymerase chain reaction (PCR), and pathway analysis system. RESULTS: The study showed that curcuminoids suppressed the amount of IL-6 in LoVo and HT-29 colorectal cancer cells. Meanwhile, curcuminoids inhibited the expression of inflammation regulator-related microRNA (miRNA). We also found that the expression of total STAT3 was downregulated by curcuminoids. Moreover, the pathway analysis system showed that curcuminoids inactivated the JAK/STAT3 signaling pathway. Taken together, we demonstrated that the anti-cancer activities of curcuminoids against colorectal cancer are due to the modulation of the IL-6/JAK/STAT3 cascade. CONCLUSION: Curcuminoids could be a promising anti-cancer agent for the treatment of human colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Humanos , Quinasas Janus , Curcumina/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Interleucina-6/metabolismo , Diarilheptanoides , Transducción de Señal , Neoplasias Colorrectales/metabolismo
18.
Molecules ; 28(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005258

RESUMEN

Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Curcumina , Fotoquimioterapia , Rutenio , Humanos , Fármacos Fotosensibilizantes/química , Rutenio/farmacología , Rutenio/química , Curcumina/farmacología , Diarilheptanoides , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antineoplásicos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
19.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003515

RESUMEN

The crystal structure determination of metal complexes of curcuminoids is a relevant topic to assess their unequivocal molecular structure. We report herein the first two X-ray crystal structures of homoleptic metal complexes of a curcuminoid, namely Dimethoxycurcumin (DiMeOC), with gallium and indium. Such successful achievement can be attributed to the suppression of interactions from the phenolic groups, which favor an appropriate molecular setup, rendering Dimethoxycurcumin gallium ((DiMeOC)2-Ga) and Dimethoxycurcumin indium ((DiMeOC)3-In) crystals. Surprisingly, the conformation of ligands in the crystal structures shows differences in each metal complex. Thus, the ligands in the (DiMeOC)2-Ga complex show two different conformers in the two molecules of the asymmetric unit. However, the ligands in the (DiMeOC)3-In complex exhibit three different conformations within the same molecule of the asymmetric unit, constituting the first such case described for an ML3 complex. The cytotoxic activity of the (DiMeOC)2-Ga complex is 4-fold higher than cisplatin against the K562 cell line and has comparable activity towards U251 and PC-3 cell lines. Interestingly, this complex exhibit three times lesser toxicity than cisplatin and even slightly lesser cytotoxicity than curcumin itself.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Galio , Galio/farmacología , Galio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Cisplatino , Indio/química , Diarilheptanoides , Línea Celular Tumoral , Ligandos , Antineoplásicos/farmacología
20.
J Vis Exp ; (200)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955385

RESUMEN

Antimicrobial Photodynamic Therapy (aPDT) has been extensively investigated in vitro, and preclinical animal models of infections are suitable for evaluating alternative treatments prior to clinical trials. This study describes the efficacy of aPDT in a murine model of oral candidiasis. Forty mice were immunosuppressed with subcutaneous injections of prednisolone, and their tongues were inoculated using an oral swab previously soaked in a C. albicans cell suspension. Tetracycline was administered via drinking water during the course of the experiment. Five days after fungal inoculation, mice were randomly distributed into eight groups; a ninth group of untreated uninfected mice was included as a negative control (n = 5). Three concentrations (20 µM, 40 µM, and 80 µM) of a mixture of curcuminoids were tested with a blue LED light (89.2 mW/cm2; ~455 nm) and without light (C+L+ and C+L- groups, respectively). Light alone (C-L+), no treatment (C-L-), and animals without infection were evaluated as controls. Data were analyzed using Welch's ANOVA and Games-Howell tests (α = 0.05). Oral candidiasis was established in all infected animals and visualized macroscopically through the presence of characteristic white patches or pseudomembranes on the dorsum of the tongues. Histopathological sections confirmed a large presence of yeast and filaments limited to the keratinized layer of the epithelium in the C-L- group, and the presence of fungal cells was visually decreased in the images obtained from mice subjected to aPDT with either 40 µM or 80 µM curcuminoids. aPDT mediated by 80 µM curcuminoids promoted a 2.47 log10 reduction in colony counts in comparison to those in the C-L- group (p = 0.008). All other groups showed no statistically significant reduction in the number of colonies, including photosensitizer (C+L-) or light alone (C-L+) groups. Curcuminoid-mediated aPDT reduced the fungal load from the tongues of mice.


Asunto(s)
Antiinfecciosos , Candidiasis Bucal , Fotoquimioterapia , Ratones , Animales , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Bucal/microbiología , Candidiasis Bucal/patología , Candida albicans , Diarilheptanoides/uso terapéutico , Modelos Animales de Enfermedad , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...